Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 264(Pt 1): 130426, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428766

RESUMEN

Gallbladder cancer (GBC) is one of the most aggressive types of biliary tree cancers and the commonest despite its rarity. It is infrequently diagnosed at an early stage, further contributing to its poor prognosis and low survival rate. The lethal nature of the disease has underlined a crucial need to discern the underlying mechanisms of GBC carcinogenesis which are still largely unknown. However, with the continual evolution in the research of cancer biology and molecular genetics, studies have found that non-coding RNAs (ncRNAs) play an active role in the molecular pathophysiology of GBC development. Dysregulated long non-coding RNAs (lncRNAs) and their interaction with intracellular signaling pathways contribute to malignancy and disease development. LncRNAs, a subclass of ncRNAs with over 200 nucleotides, regulate gene expression at transcriptional, translational, and post-translational levels and especially as epigenetic modulators. Thus, their expression abnormalities have been linked to malignancy and therapeutic resistance. lnsRNAs have also been found in GBC patients' serum and tumor tissue biopsies, highlighting their potential as novel biomarkers and for targeted therapy. This review will examine the growing involvement of lncRNAs in GBC pathophysiology, including related signaling pathways and their wider clinical use.


Asunto(s)
Neoplasias de la Vesícula Biliar , ARN Largo no Codificante , Humanos , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/diagnóstico , Neoplasias de la Vesícula Biliar/patología , ARN Largo no Codificante/genética , Biomarcadores de Tumor/genética , Transducción de Señal/genética , ARN no Traducido
2.
Pathol Res Pract ; 253: 155085, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38183822

RESUMEN

Stroke, a major global cause of mortality, leads to a range of problems for those who survive. Besides its brutal events, stroke also tends to have a characteristic of recurrence, making it a complex disease involving intricate regulatory networks. One of the major cellular regulators is the non-coding RNAs (ncRNA), specifically microRNAs (miRNAs), thus the possible functions of miRNAs in the pathogenesis of stroke are discussed as well as the possibility of using miRNA-based therapeutic approaches. Firstly, the molecular mechanisms by which miRNAs regulate vital physiological processes, including synaptic plasticity, oxidative stress, apoptosis, and the integrity of the blood-brain barrier (BBB) are reviewed. The miRNA indirectly impacts stroke outcomes by regulating BBB function and angiogenesis through the targeting of transcription factors and angiogenic factors. In addition, the tendency for some miRNAs to be upregulated in response to hypoxia, which is a prevalent phenomenon in stroke and various neurological disorders, highlights the possibility that it controls hypoxia-inducible factor (HIF) signaling and angiogenesis, thereby influencing the integrity of the BBB as examples of the discussed mechanisms. Furthermore, this review explores the potential therapeutic targets that miRNAs may offer for stroke recovery and highlights their promising capacity to alleviate post-stroke complications. This review provides researchers and clinicians with valuable resources since it attempts to decipher the complex network of miRNA-mediated mechanisms in stroke. Additionally, the review addresses the interplay between miRNAs and stroke risk factors as well as clinical applications of miRNAs as diagnostic and prognostic markers.


Asunto(s)
MicroARNs , Accidente Cerebrovascular , Humanos , MicroARNs/genética , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/genética , Factores de Transcripción , Hipoxia , Apoptosis
3.
Pathol Res Pract ; 253: 155093, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38184962

RESUMEN

Stroke is a widespread neurological disorder associated with physical disabilities, mortality, and economic burden. In recent decades, substantial progress has been achieved in reducing the impact of this public health problem. However, further understanding of the pathophysiology of stroke and the underlying genetic pathways is required. The pathological mechanisms of stroke comprise multifaceted molecular cascades regulated by various microRNAs (miRNAs). An increasing number of studies have highlighted the role of miRNAs, which have received much attention during the last decades as an important class of post-transcriptional regulators. It was shown that miRNAs exert their role in the etiology of stroke via mediating excitotoxicity and neuroinflammation. Additionally, miRNAs could be helpful as non-invasive or minimally invasive biomarkers and therapeutic agents. Thus, the current review focused on the interplay of these miRNAs in stroke pathology to upgrade the existing therapeutic strategies.


Asunto(s)
MicroARNs , Accidente Cerebrovascular , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Enfermedades Neuroinflamatorias , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/terapia , Biomarcadores/metabolismo
4.
Pathol Res Pract ; 254: 155102, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38211386

RESUMEN

microRNAs (miRNAs) play a crucial role in brain growth and function. Hence, research on miRNA has the potential to reveal much about the etiology of neuropsychiatric diseases. Among these, schizophrenia (SZ) is a highly intricate and destructive neuropsychiatric ailment that has been thoroughly researched in the field of miRNA. Despite being a relatively recent area of study about miRNAs and SZ, this discipline has advanced enough to justify numerous reviews that summarize the findings from the past to the present. However, most reviews cannot cover all research, thus it is necessary to synthesize the large range of publications on this topic systematically and understandably. Consequently, this review aimed to provide evidence that miRNAs play a role in the pathophysiology and progression of SZ. They have also been investigated for their potential use as biomarkers and therapeutic targets.


Asunto(s)
MicroARNs , Esquizofrenia , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Biomarcadores , Encéfalo/metabolismo , Transducción de Señal
5.
Pathol Res Pract ; 254: 155147, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38246033

RESUMEN

Asthma is a diverse inflammatory illness affecting the respiratory passages, leading to breathing challenges, bouts of coughing and wheezing, and, in severe instances, significant deterioration in quality of life. Epigenetic regulation, which involves the control of gene expression through processes such as post-transcriptional modulation of microRNAs (miRNAs), plays a role in the evolution of various asthma subtypes. In immune-mediated diseases, miRNAs play a regulatory role in the behavior of cells that form the airway structure and those responsible for defense mechanisms in the bronchi and lungs. They control various cellular processes such as survival, growth, proliferation, and the production of chemokines and immune mediators. miRNAs possess chemical and biological characteristics that qualify them as suitable biomarkers for diseases. They allow for the categorization of patients to optimize drug selection, thus streamlining clinical management and decreasing both the economic burden and the necessity for critical care related to the disease. This study provides a concise overview of the functions of miRNAs in asthma and elucidates their regulatory effects on the underlying processes of the disease. We provide a detailed account of the present status of miRNAs as biomarkers for categorizing asthma, identifying specific asthma subtypes, and selecting appropriate treatment options.


Asunto(s)
Asma , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/uso terapéutico , Epigénesis Genética , Calidad de Vida , Asma/diagnóstico , Asma/genética , Asma/tratamiento farmacológico , Biomarcadores
6.
Pathol Res Pract ; 254: 155146, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38266457

RESUMEN

Epilepsy is a medical condition characterized by intermittent seizures accompanied by changes in consciousness. Epilepsy significantly impairs the daily functioning and overall well-being of affected individuals. Epilepsy is a chronic neurological disorder characterized by recurrent seizures resulting from various dysfunctions in brain activity. The molecular processes underlying changes in neuronal structure, impaired apoptotic responses in neurons, and disruption of regenerative pathways in glial cells in epilepsy remain unknown. MicroRNAs (miRNAs) play a crucial role in regulating apoptosis, autophagy, oxidative stress, neuroinflammation, and the body's regenerative and immune responses. miRNAs have been shown to influence many pathogenic processes in epilepsy including inflammatory responses, neuronal necrosis and apoptosis, dendritic growth, synaptic remodeling, and other processes related to the development of epilepsy. Therefore, the purpose of our current analysis was to determine the role of miRNAs in the etiology and progression of epilepsy. Furthermore, they have been examined for their potential application as biomarkers and therapeutic targets.


Asunto(s)
Epilepsia , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Epilepsia/diagnóstico , Epilepsia/genética , Epilepsia/metabolismo , Convulsiones/metabolismo , Neuronas/patología , Autofagia
7.
Pathol Res Pract ; 253: 155007, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38061270

RESUMEN

Alzheimer's disease (AD) is a multifaceted, advancing neurodegenerative illness that is responsible for most cases of neurological impairment and dementia in the aged population. As the disease progresses, affected individuals may experience cognitive decline, linguistic problems, affective instability, and behavioral changes. The intricate nature of AD reflects the altered molecular mechanisms participating in the affected human brain. MicroRNAs (miRNAs, miR) are essential for the intricate control of gene expression in neurobiology. miRNAs exert their influence by modulating the transcriptome of brain cells, which typically exhibit substantial genetic activity, encompassing gene transcription and mRNA production. Presently, comprehensive studies are being conducted on AD to identify miRNA-based signatures that are indicative of the disease pathophysiology. These findings can contribute to the advancement of our understanding of the mechanisms underlying this disorder and can inform the development of therapeutic interventions based on miRNA and related RNA molecules. Therefore, this comprehensive review provides a detailed holistic analysis of the latest advances discussing the emerging role of miRNAs in the progression of AD and their possible application as potential biomarkers and targets for therapeutic interventions in future studies.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , MicroARNs , Humanos , Anciano , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/terapia , Encéfalo/metabolismo , ARN Mensajero , Biomarcadores/metabolismo
8.
Pathol Res Pract ; 253: 155027, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38101159

RESUMEN

Oral cancer (OC) is a widely observed neoplasm on a global scale. Over time, there has been an increase in both its fatality and incidence rates. Oral cancer metastasis is a complex process that involves a number of cellular mechanisms, including invasion, migration, proliferation, and escaping from malignant tissue through either lymphatic or vascular channels. MicroRNAs (miRNAs) are a crucial class of short non-coding RNAs recognized as significant modulators of diverse cellular processes and exert a pivotal influence on the carcinogenesis pathway, functioning either as tumor suppressors or as oncogenes. It has been shown that microRNAs (miRNAs) have a role in metastasis at several stages, including epithelial-mesenchymal transition, migration, invasion, and colonization. This regulation is achieved by targeting key genes involved in these pathways by miRNAs. This paper aims to give a contemporary analysis of OC, focusing on its molecular genetics. The current literature and emerging advancements in miRNA dysregulation in OC are thoroughly examined. This project would advance OC diagnosis, prognosis, therapy, and therapeutic implications.


Asunto(s)
MicroARNs , Neoplasias de la Boca , Humanos , MicroARNs/metabolismo , Carcinogénesis/genética , Neoplasias de la Boca/diagnóstico , Neoplasias de la Boca/genética , Oncogenes , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/genética , Transición Epitelial-Mesenquimal/genética
9.
Pathol Res Pract ; 253: 155044, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141573

RESUMEN

Colorectal cancer (CRC) is one of the most frequent cancers in incidence and mortality. Despite advances in cancer biology, molecular genetics, and targeted treatments, CRC prognosis and survival have not kept pace. This is usually due to advanced staging and metastases at diagnosis. Thus, great importance has been placed upon understanding the molecular pathophysiology behind the development of CRC, which has highlighted the significance of non-coding RNA's role and associated intracellular signaling pathways in the pathogenesis of the disease. According to recent studies, long non-coding RNAs (lncRNA), a subtype of ncRNAs whose length exceeds 200 nucleotides, have been found to have regulatory functions on multiple levels. Their actions at the transcription, post-transcriptional, translational levels, and epigenetic regulation have made them prime modulators of gene expression. Due to their role in cellular cancer hallmarks, their dysregulation has been linked to several illnesses, including cancer. Furthermore, their clinical relevance has expanded due to their possible detection in blood which has cemented them as potential future biomarkers and thus, potential targets for new therapy. This review will highlight the importance of lncRNAs and related signaling pathways in the development of CRC and their subsequent clinical applications.


Asunto(s)
Neoplasias Colorrectales , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , Epigénesis Genética , Neoplasias Colorrectales/terapia , Neoplasias Colorrectales/tratamiento farmacológico , ARN no Traducido/genética , Transducción de Señal/genética , Regulación Neoplásica de la Expresión Génica/genética
10.
Pathol Res Pract ; 252: 154949, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37992507

RESUMEN

Oral cancer (OC) is the predominant type originating in the head and neck region. The incidence of OC is mostly associated with behavioral risk factors, including tobacco smoking and excessive alcohol intake. Additionally, there is a lower but still significant association with viral infections such as human papillomaviruses and Epstein-Barr viruses. Furthermore, it has been observed that heritable genetic variables are linked to the risk of OC, in addition to the previously mentioned acquired risk factors. The current absence of biomarkers for OC diagnosis contributes to the frequent occurrence of advanced-stage diagnoses among patients. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs, and circular RNAs, have been observed to exert a significant effect on the transcriptional control of target genes involved in cancer, either through direct or indirect mechanisms. miRNAs are a class of short ncRNAs that play a role in regulating gene expression by enabling mRNA degradation or translational repression at the post-transcriptional phase. miRNAs are known to play a fundamental role in the development of cancer and the regulation of oncogenic cell processes. Notch signaling, PTEN/Akt/mTOR axis, KRAS mutation, JAK/STAT signaling, P53, EGFR, and the VEGFs have all been linked to OC, and miRNAs have been shown to have a role in all of these. The dysregulation of miRNA has been identified in cases of OC and is linked with prognosis.


Asunto(s)
MicroARNs , Neoplasias de la Boca , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/diagnóstico , Transducción de Señal/genética , Regulación de la Expresión Génica , Herpesvirus Humano 4/genética , Regulación Neoplásica de la Expresión Génica
11.
Pathol Res Pract ; 251: 154855, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37806169

RESUMEN

Pancreatic cancer (PC) has the greatest mortality rate of all the main malignancies. Its advanced stage and poor prognosis place it at the bottom of all cancer sites. Hence, emerging biomarkers can enable precision medicine where PC therapy is tailored to each patient. This highlights the need for new, highly sensitive and specific biomarkers for early PC diagnosis. Prognostic indicators are also required to stratify PC patients. To avoid ineffective treatment, adverse events, and expenses, biomarkers are also required for patient monitoring and identifying responders to treatment. There is substantial evidence that microRNAs (miRs, miRNAs) play a critical role in regulating mRNA and, as a consequence, protein expression in normal and malignant tissues. Deregulated miRNA profiling in PC can help with diagnosis, treatment planning, and prognosis. Furthermore, knowledge of the primary effector genes and downstream pathways in PC can help pinpoint potential miRNAs for use in treatment. Different miRNA expression profiles may serve as diagnostic, prognostic markers, and therapeutic targets across the spectrum of malignant pancreatic illness. Dysregulation of miRNAs has been linked to the malignant pathophysiology of PC through affecting many cellular functions such as increasing invasive and proliferative prospect, supporting angiogenesis, cell cycle aberrance, apoptosis elusion, metastasis promotion, and low sensitivity to particular treatments. Accordingly, in the current review, we summarize the recent advances in the roles of oncogenic and tumor suppressor (TS) miRNAs in PC and discuss their potential as worthy diagnostic and prognostic biomarkers for PC, as well as their significance in PC pathogenesis and anticancer drug resistance.


Asunto(s)
MicroARNs , Neoplasias Pancreáticas , Humanos , MicroARNs/metabolismo , Resistencia a Antineoplásicos/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/diagnóstico , Pronóstico , Biomarcadores , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Pancreáticas
12.
Pathol Res Pract ; 251: 154856, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37806171

RESUMEN

Pheochromocytoma (PCC) is a type of neuroendocrine tumor that originates from adrenal medulla or extra-adrenal chromaffin cells and results in the production of catecholamine. Paroxysmal hypertension and cardiovascular crises were among the clinical signs experienced by people with PCC. Five-year survival of advanced-stage PCC is just around 40% despite the identification of various molecular-level fundamentals implicated in these pathogenic pathways. MicroRNAs (miRNAs, miRs) are a type of short, non-coding RNA (ncRNA) that attach to the 3'-UTR of a target mRNA, causing translational inhibition or mRNA degradation. Evidence is mounting that miRNA dysregulation plays a role in the development, progression, and treatment of cancers like PCC. Hence, this study employs a comprehensive and expedited survey to elucidate the potential role of miRNAs in the development of PCC, surpassing their association with survival rates and treatment options in this particular malignancy.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , MicroARNs , Feocromocitoma , Humanos , Feocromocitoma/diagnóstico , MicroARNs/genética , Neoplasias de las Glándulas Suprarrenales/genética , Neoplasias de las Glándulas Suprarrenales/diagnóstico , Catecolaminas , Transducción de Señal
13.
Pathol Res Pract ; 249: 154771, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37611429

RESUMEN

Merkel cell carcinoma (MCC) is an uncommon invasive form of skin cancer that typically manifests as a nodule on the face, head, or neck that is flesh-colored or bluish-red in appearance. Rapid growth and metastasis are hallmarks of MCC. MCC has the second-greatest mortality rate among skin cancers after melanoma. Despite the recent cascade of molecular investigations, no universal molecular signature has been identified as responsible for MCC's pathogenesis. The microRNAs (miRNAs) play a critical role in the post-transcriptional regulation of gene expression. Variations in the expression of these short, non-coding RNAs have been associated with various malignancies, including MCC. Although the incidence of MCC is very low, a significant amount of study has focused on the interaction of miRNAs in MCC. As such, the current survey is a speedy intensive route revealing the potential involvement of miRNAs in the pathogenesis of MCC beyond their association with survival in MCC.


Asunto(s)
Carcinoma de Células de Merkel , Melanoma , MicroARNs , Neoplasias Cutáneas , Humanos , MicroARNs/genética , Carcinoma de Células de Merkel/genética , Transducción de Señal , Neoplasias Cutáneas/genética , Melanoma/genética
14.
Pathol Res Pract ; 249: 154763, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37595447

RESUMEN

Merkel cell carcinoma (MCC) is a rare, aggressive form of skin malignancy with a high recurrence commonly within two to three years of initial diagnosis. The incidence of MCC has nearly doubled in the past few decades. Options for diagnosing, assessing, and treating MCC are limited. MicroRNAs (miRNAs) are a class of small, non-coding RNA molecules that play an important role in controlling many different aspects of cell biology. Many miRNAs are aberrantly expressed in distinct types of cancer, with some serving as tumor suppressors and others as oncomiRs. Therefore, the future holds great promise for the utilization of miRNAs in enhancing diagnostic, prognostic, and therapeutic approaches for MCC. Accordingly, the goal of this article is to compile, summarize, and discuss the latest research on miRNAs in MCC, highlighting their potential clinical utility as diagnostic and prognostic biomarkers.


Asunto(s)
Carcinoma de Células de Merkel , MicroARNs , Neoplasias Cutáneas , Humanos , MicroARNs/genética , Carcinoma de Células de Merkel/diagnóstico , Carcinoma de Células de Merkel/genética , Pronóstico , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/genética
15.
Pathol Res Pract ; 248: 154665, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37418996

RESUMEN

Adrenocortical carcinoma (ACC) is an uncommon aggressive endocrine malignancy that is nonetheless associated with significant mortality and morbidity rates because of endocrine and oncological consequences. Recent genome-wide investigations of ACC have advanced our understanding of the disease, but substantial obstacles remain to overcome regarding diagnosis and prognosis. MicroRNAs (miRNAs, miRs) play a crucial role in the development and metastasis of a wide range of carcinomas by regulating the expression of their target genes through various mechanisms causing translational repression or messenger RNA (mRNA) degradation. Along with miRNAs in the adrenocortical cancerous tissue, circulating miRNAs are considered barely invasive diagnostic or prognostic biomarkers of ACC. miRNAs may serve as treatment targets that expand the rather-limited therapeutic repertoire in the field of ACC. Patients with advanced ACC still have a poor prognosis when using the available treatments, despite a substantial improvement in understanding of the illness over the previous few decades. Accordingly, in this review, we provide a crucial overview of the recent studies in ACC-associated miRNAs regarding their diagnostic, prognostic, and potential therapeutic relevance.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Carcinoma Corticosuprarrenal , MicroARNs , Humanos , Carcinoma Corticosuprarrenal/diagnóstico , Carcinoma Corticosuprarrenal/genética , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Corteza Suprarrenal/diagnóstico , Neoplasias de la Corteza Suprarrenal/genética , Pronóstico , Resistencia a Medicamentos
16.
Pathol Res Pract ; 248: 154690, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37473498

RESUMEN

Adrenocortical carcinoma (ACC) is a highly malignant infrequent tumor with a dismal prognosis. microRNAs (miRNAs, miRs) are crucial in post-transcriptional gene expression regulation. Due to their ability to regulate multiple gene networks, miRNAs are central to the hallmarks of cancer, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, replicative immortality, induction/access to the vasculature, activation of invasion and metastasis, reprogramming of cellular metabolism, and avoidance of immune destruction. ACC represents a singular form of neoplasia associated with aberrations in the expression of evolutionarily conserved short, non-coding RNAs. Recently, the role of miRNAs in ACC has been examined extensively despite the disease's rarity. Hence, the current review is a fast-intensive track elucidating the potential role of miRNAs in the pathogenesis of ACC besides their association with the survival of ACC.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , Carcinoma Corticosuprarrenal , MicroARNs , Humanos , Carcinoma Corticosuprarrenal/genética , Carcinoma Corticosuprarrenal/patología , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Corteza Suprarrenal/genética , Neoplasias de la Corteza Suprarrenal/patología , Pronóstico , Transducción de Señal/genética
17.
Pathol Res Pract ; 248: 154590, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37295259

RESUMEN

Cancer of the salivary glands is one of the five major types of head and neck cancer. Due to radioresistance and a strong propensity for metastasis, the survival rate for nonresectable malignant tumors is dismal. Hence, more research is needed on salivary cancer's pathophysiology, particularly at the molecular level. The microRNAs (miRNAs) are a type of noncoding RNA that controls as many as 30% of all genes that code for proteins at the posttranscriptional level. Signature miRNA expression profiles have been established in several cancer types, suggesting a role for miRNAs in the incidence and progression of human malignancies. Salivary cancer tissues were shown to have significantly aberrant levels of miRNAs compared to normal salivary gland tissues, supporting the hypothesis that miRNAs play a crucial role in the carcinogenesis of salivary gland cancer (SGC). Besides, several SGC research articles reported potential biomarkers and therapeutic targets for the miRNA-based treatment of this malignancy. In this review, we will explore the regulatory impact of miRNAs on the processes underlying the molecular pathology of SGC and provide an up-to-date summary of the literature on miRNAs that impacted this malignancy. We will eventually share information about their possible use as diagnostic, prognostic, and therapeutic biomarkers in SGC.


Asunto(s)
Neoplasias de Cabeza y Cuello , MicroARNs , Neoplasias de las Glándulas Salivales , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de las Glándulas Salivales/diagnóstico , Neoplasias de las Glándulas Salivales/genética , Neoplasias de las Glándulas Salivales/metabolismo , Glándulas Salivales/patología , Neoplasias de Cabeza y Cuello/patología , Resistencia a Medicamentos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica/genética
18.
Pathol Res Pract ; 247: 154584, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37267724

RESUMEN

Salivary gland cancer (SGC) is immensely heterogeneous, both in terms of its physical manifestation and its aggressiveness. Developing a novel diagnostic and prognostic detection method based on the noninvasive profiling of microribonucleic acids (miRs) could be a goal for the clinical management of these specific malignancies, sparing the patients' valuable time. miRs are promising candidates as prognostic biomarkers and therapeutic targets or factors that can advance the therapy of SGC due to their ability to posttranscriptionally regulate the expression of various genes involved in cell proliferation, differentiation, cell cycle, apoptosis, invasion, and angiogenesis. Depending on their biological function, many miRs may contribute to the development of SGC. Therefore, this article serves as an accelerated study guide for SGC and the biogenesis of miRs. Here, we shall list the miRs whose function in SGC pathogenesis has recently been determined with an emphasis on their potential applications as therapeutic targets. We will also offer a synopsis of the current state of knowledge about oncogenic and tumor suppressor miRs in relation to SGC.


Asunto(s)
MicroARNs , Neoplasias de las Glándulas Salivales , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de las Glándulas Salivales/patología , Genes Supresores de Tumor , Pronóstico , Transducción de Señal/genética
19.
Pathol Res Pract ; 246: 154511, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37178618

RESUMEN

High mortality and morbidity rates and variable clinical behavior are hallmarks of glioblastoma (GBM), the most common and aggressive primary malignant brain tumor. Patients with GBM often have a dismal outlook, even after undergoing surgery, postoperative radiation, and chemotherapy, which has fueled the search for specific targets to provide new insights into the development of contemporary therapies. The ability of microRNAs (miRNAs/miRs) to posttranscriptionally regulate the expression of various genes and silence many target genes involved in cell proliferation, cell cycle, apoptosis, invasion, angiogenesis, stem cell behavior and chemo- and radiotherapy resistance makes them promising candidates as prognostic biomarkers and therapeutic targets or factors to advance GBM therapeutics. Hence, this review is like a crash course in GBM and how miRNAs related to GBM. Here, we will outline the miRNAs whose role in the development of GBM has been established by recent in vitro or in vivo research. Moreover, we will provide a summary of the state of knowledge regarding oncomiRs and tumor suppressor (TS) miRNAs in relation to GBM with an emphasis on their potential applications as prognostic biomarkers and therapeutic targets.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , MicroARNs , Humanos , MicroARNs/genética , Glioblastoma/patología , Neoplasias Encefálicas/patología , Transducción de Señal/genética , Proliferación Celular , Biomarcadores , Regulación Neoplásica de la Expresión Génica
20.
Pathol Res Pract ; 245: 154437, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37030167

RESUMEN

Cholangiocarcinoma (CCA), the second most frequent liver cancer after hepatocellular carcinoma, has been rising worldwide in recent epidemiological research. This neoplasia's pathogenesis is poorly understood. Yet, recent advances have illuminated the molecular processes of cholangiocyte malignancy and growth. Late diagnosis, ineffective therapy, and resistance to standard treatments contribute to this malignancy's poor prognosis. So, to develop efficient preventative and therapy methods, the molecular pathways that cause this cancer must be better understood. MicroRNAs (miRNAs) are non-coding ribonucleic acids (ncRNAs) that influence gene expression. Biliary carcinogenesis involves abnormally expressed miRNAs that act as oncogenes or tumor suppressors (TSs). The miRNAs regulate multiple gene networks and are involved in cancer hallmarks like reprogramming of cellular metabolism, sustained proliferative signaling, evasion of growth suppressors, replicative immortality, induction/access to the vasculature, activation of invasion and metastasis, and avoidance of immune destruction. In addition, numerous ongoing clinical trials are demonstrating the efficacy of therapeutic strategies based on miRNAs as powerful anticancer agents. Here, we will update the research on CCA-related miRNAs and explain their regulation involved in the molecular pathophysiology of this malignancy. Eventually, we will disclose their potential as clinical biomarkers and therapeutic tools in CCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Neoplasias Hepáticas , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Virulencia , Colangiocarcinoma/genética , Colangiocarcinoma/terapia , Colangiocarcinoma/patología , Transducción de Señal/genética , Neoplasias Hepáticas/patología , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/terapia , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Regulación Neoplásica de la Expresión Génica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...